1.

If the curves `ay+x^2=7` and `x^3=y` cut orthogonally at `(1, 1)` then `a=` (A) 1 (B) `-6` (C) 6 (D) `1/6`A. 1B. 0C. `-6`D. 6

Answer» Correct Answer - D
We have, `ay=x^(2)=7 "and" x^(3)=y`
On differentiating w.r.t. x in both equations, we get
`a.(dy)/(dx)+2x=0` and `3x^(2)=(dy)/(dx)`
`rArr (dy)/(dx)_(1,1)=-2/a=m_(1)`
and `(dy)/(dx)_(1,1)=3.1=3=m_(2)`
Since, the curves cut orthogonally at (1,1).
`therefore m_(1).m_(2)=-1`
`rArr (-2/a).3=-1`
`therefore a=6`


Discussion

No Comment Found