1.

If the direction cosines of a variable line in two adjacent points be `l, M, n and l+deltal,m+deltam+n+deltan` the small angle `deltatheta`as between the two positions is given by

Answer» Clearly, we have
`l^(2)+m^(2)+n^(2)=1" "...(i)`
and`(l+deltal)^(2)+(m+deltam)^(2)+(n+deltan)^(2)=1" "...(ii)`
Substracting (i) from (ii), we get
`(l+deltal)^(2)+(m+deltam)^(2)+(n+deltan)^(2)-(l^(2)+m^(2)+n^(2))=0`
`rArr (deltal)^(2)+(deltam)^(2)+(deltan)^(2)=-2(l*deltal+m*deltam+n*deltan)" "...(iii)`
`therefore cosdeltatheta=l*(l+deltal)+m*(m+deltam)+n*(n+deltan)`
`=(l^(2)+m^(2)+n^(2))+(l*deltal+m*deltam+n*deltan)`
`=1-(1)/(2)[(deltal)^(2)+(deltam)^(2)+(deltan)^(2)]` [using (i) and (iii)].
`therefore(deltal)^(2)+(deltam)^(2)+(deltan)^(2)=2(1-cosdeltatheta)`
`=4sin^(2)"(deltatheta)/(2)=4*((deltatheta)/(2))^(2)`
`[therefore (deltatheta)/(2) " being small, " sin""(deltatheta)/(2)=(deltatheta)/(2)]`
`(deltatheta)^(2)`.
Hence, `(deltatheta)^(2)=(deltal)^(2)+(deltam)^(2)+(deltan)^(2)`.


Discussion

No Comment Found