InterviewSolution
Saved Bookmarks
| 1. |
If the function f(x) satisfies `lim_(xrarr1) (f(x)-2)/(x^(2)-1)=pi`, evaluate `lim_(Xrarr1) f(x)`. |
|
Answer» According to the problem, `underset(xrarr1)"lim"(f(x)-2)/(x^(2)-1)=pi` Now, `underset(Xrarr1)"lim"[f(x)-2]=underset(Xrarr1)"lim"[(f(x)-2)/(x^(2)-1).(x^(2)-1)]` `=underset(xrarr1)"lim"(f(x)-2)/(x^(2)-1).underset(xrarr1)"lim"(x^(2)-1)` `=pixx0=0` `rArr underset(xrarr1)"lim"f(x)=2` |
|