1.

If the normals any point to the parabola `x^(2)=4y` cuts the line y = 2 in points whose abscissar are in A.P., them the slopes of the tangents at the 3 conormal points are in

Answer» `y^2=4ax----------`
`y=mx-2am-am^3`
`x^2=4ay`
`x=my-2am-am^3`
`a=1`
`x=my-2m-m^3`
`P(h,k)`
`h=mk-2m-m^3`
`m^3+2m-mk+h=0`
`m^3+(2-k)m+h=0`
Cubic equation`m_1,m_2,m_3`
`m_1+m_2+m_3=0`
`m_1^3+m_2^3+m_3^3=3m_1m_2m_3`
`m_1,m_2,m_3->slope of normal`
`-1/m_1,-1/m_2,-1/m_3`->slope of tangent at foot of normal
`x=my-2m-m^3//y=2`
`x=2m-2m-m^3`
`x_1=-m_1^3,x_2=-m_2^3,x_3=-m_3^3`
`x_1+x_3=2x_2`
`-m_1^3-m_3^3=-2m_2^3`
`m_1^3+m_3^3=2m_2^3`
`2m_2^3+m_2^3=3m_1m_2m_3`
`m_2^2=m_1m_3`
`1/m_2^2=1/m_1xx1/m_3`
`(-1/m_2)^2=-1/m_1xx1/m_3`
`b^2=ac`
`-1/m_1,-1/m_2,-1/m_3`are in GP
option `(b)`


Discussion

No Comment Found