InterviewSolution
Saved Bookmarks
| 1. |
If the vectors `veca` and `vecb` are perpendicular to each other then a vector `vecv` in terms of `veca` and `vecb` satisfying the equations `vecv.veca=0, vecv.vecb=1` and `[(vecv, veca, vecb)]=1` isA. `(vecb)/(|vecb|^(2))+ (vecaxx vecb)/(|vecaxxvecb|^(2))`B. `(vecb)/(|vecb|)+ (vecaxx vecb)/(|vecaxxvecb|^(2))`C. `(vecb)/(|vecb|)+ (vecaxx vecb)/(|vecaxxvecb|)`D. none of these |
|
Answer» Correct Answer - a Let `vecc = xveca + yvecb +z veca xx vecb` Given : `veca. Vecb = 0, veca. Vecb = 1 , [ vecv veca vecb] =1 ` `Rightarrow vecv.veca=xveca.veca = x|veca|^(2)` ` ( veca. Vecb =0, veca.veca xx vecb =0)` ` Rightarrow x =0` Again, ` vecv. (veca xx vecb) = z (veca xx vecb)^(2)` ` Rightarrow 1=z (veca xx vecb)^(2) or z= 1/(|veca xx vecb|^(2))` Hence, `vecv= 1/|vecb|^(2) vecb+ 1 / (|veca xx vecb|^(2)) veca xx vecb` |
|