1.

If the vectors `veca` and `vecb` are perpendicular to each other then a vector `vecv` in terms of `veca` and `vecb` satisfying the equations `vecv.veca=0, vecv.vecb=1` and `[(vecv, veca, vecb)]=1` isA. `(vecb)/(|vecb|^(2))+(vecaxxvecb)/(|vecaxxvecb|^(2))`B. `(vecb)/(|vecb|)+(vecaxxvecb)/(|vecaxxvecb|^(2))`C. `(vecb)/(|vecb|^(2))+(vecaxxvecb)/(|vecaxxvecb|)`D. none of these

Answer» Correct Answer - A
If `veca, vecb, vecc` are three non coplanar vectors, then any vector `vecr` can be expressed as
`vecr={(vecr.veca)/(|veca|^(2))}veca+{(vecr.vecb)/(|vecb|^(2))}+vecb+{(vecr.vecc)/(|vecc|^(2))}vecc`
Clearly `veca, vecb` and `vecaxxvecb` are three non-coplanar vectors.
`:.vecv={(vecv.veca)/(|veca|^(2))}veca+{(vecv.vecb)/(|vecb|^(2))}vecb+{(vecv.(vecaxxvecb))/(|vecaxxvecb|^(2))}(vecaxxvecb)`
`implies vecv=0veca+1/(|vecb|^(2)).vecb+1/(|vecaxxvecb|^(2)).(vecaxxvecb)`


Discussion

No Comment Found

Related InterviewSolutions