InterviewSolution
Saved Bookmarks
| 1. |
If `veca, vecb, vecc` are three non-zero non-null vectors are `vecr` is any vector in space then `[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc` is equal toA. `2[(veca, vecb, vecc)]vecr`B. `3[(veca, vecb, vecc)]vecr`C. `[(veca, vecb, vecc)]`D. None of these |
|
Answer» Correct Answer - C We have `vecr=xveca+yvecb+zvecc`………………i Taking product successively with `vecbxxvecc, veccxxveca` and `vecaxxvecb` we obtain `x=([(vecb, vecc, vecr)])/([(veca, vecb, vecc)]),y=([(vecc, veca, vecr)])/([(veca, vecb, vecc)]),z=([(veca, vecb, vecr)])/([(veca, vecb, vecc)])` Substituting the values of `x,y,z` in (i) we get `[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]=vecc=[(veca, vecb, vecc)]vecr` |
|