InterviewSolution
| 1. |
If the volume of a parallelepiped whose coterminous edges are given by the vectors vec a=hat i+hat j+nhat k vec b=2i+4j-nhat k and vec c=hat i+hat j+3hat k(n>=0) is 158 cu.Units then |
|
Answer» Answer: Search for questions, POSTS and chapters Maths Bookmark Let the VOLUME of a parallelopiped whose coterminous edges are given by u = i ^ + j ^
+λ ^ , v = i ^ + j ^
+3 k ^ and w =2 i ^ + j ^
+ k ^ be 1cu. UNITS. If θ be the angle between the edge u and w , then cosθ can be:
share Share Answer Correct option is D 6 3
7
Given, u = i ^ + j ^
+λ k ^ , v = i ^ + j ^
+3 k ^
w =2 i ^ + j ^
+ k ^
Volume of parallelopied =u.( v × w )=[ u
v
w ] = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
1 1 2
1 1 1
λ λ 1
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
=1(1−3)−1(1−6)+λ(1−2)−2+5+(−λ)3−λ so, Given volume =±1 taking (+) sign 3−λ=1 λ=2 Angle between u and w
cosθ= ∣ u ∣.∣ w ∣ u . w
= 1+1+4
. 4+1+1
(i+j+2k).(2i+j+k)
= 5
. 5
2+1+2
= 5 5
=1 Taking (−) sign 3−λ=−1 λ=4 u = i ^ + j ^
+4 k ^
w =2i+j+ k ^
cosθ= ∣ u ∣∣ w ∣ u . w
= 1+1+16
4+1+1
( i ^ + j ^
+4 k ^ ).(2i+j+k)
= 18
6
2+1+4
= 6 3 ....Answer |
|