InterviewSolution
Saved Bookmarks
| 1. |
If `veca and vecb` are two vectors and angle between them is `theta` , thenA. `|vecaxxvecb|^(2)+ (veca.vecb)^(2)= |veca|^(2)|vecb|^(2)`B. `|vecaxxvecb|^(2)+ (veca.vecb)^(2), if theta= pi//4`C. `veca xx vecb = (veca. Vecb) hatn` ( where `hatn` is a normal unit vector ) `if theta f= pi//4`D. `(veca xx vecb ) . (veca + vecb) =0` |
|
Answer» Correct Answer - a,b,c,d `vecaxx vecb= |veca||vecb| sin theta hatn ` `or |vecaxx vecb|=|veca||vecb|sintheta` `or sin theta (|vecaxxvecb|)/(|veca||vecb|)` `veca. vecb= |veca||vecb|cos theta` `Rightarrow cos theta= (|veca.vecb|)/(|veca||vecb|)` From (i) and (ii) . `sin^(2)theta + cos ^(2) theta=1` `if theta= pi//4 "then" sintheta=costheta= 1//sqrt2.` Therefore, `|vecaxxvecb|= (|veca||vecb|)/sqrt2 and veca.vecb= (|veca||vecb|)/sqrt2` `|vecaxxvecb|= veca.vecb` `vecaxxvecb= |veca||vecb|sinthetahatn = (|veca||vecb|)/sqrt2hatn` `(veca.vecb)hatn` |
|