 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | if `veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk` and `|vecc|=1` Such that `[veca xx vecb vecb xx vecc vecc xx veca]` has maximum value, then the value of `|(veca xx vecb) xx vecc|^(2)` is | 
| Answer» Correct Answer - A `[veca xx vecbvecb xx veccvecc xx veca]` `=[vecavecbvecc]^(2) = |vecc. (veca xx vecb)|^(2) cos^(2)theta` The maximum value of `[vecavecbvecc]` is possible only when `vecc` is parallel to `veca xx vecb`. `rArr theta=0` or `pi` Hence, `|(veca xx vecb) xx vecc|^(2) =|veca xx vecb|^(2)|vecc|^(2)sin^(2)theta=0` | |