InterviewSolution
Saved Bookmarks
| 1. |
If `veca , vecb , vecc and vecd` are four non-coplanar unit vectors such that `vecd` makes equal angles with all the three vectors `veca, vecb, vecc` then prove that `[vecd vecavecb]=[vecd veccvecb]=[vecd veccveca]` |
|
Answer» Since `vecd` makes equalw angles with the vectors `veca1 , vecb and vecc`, we have, `d= (mu(veca + vecb + vecc))/3` (`vecd` passes through the centroid of the triangle with position vectors, `veca , vecb and vecc`) Again `[veca vecb vecc]vecd = [ vecd vecb vecc] + [vecd vecc vecd] vecb` `+ [vecd veca vecb]vecc` From (i) and (ii) , we get `[veca vecb vecc] = [vecd vecc veca] = [ vecd veca vecb] ` |
|