InterviewSolution
Saved Bookmarks
| 1. |
If `vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd` show that `(veca-vecd)` is parallel to `(vecb-vecc). It is given that `vec!=vecd and vecb!=vecc. |
|
Answer» `{:("we have ",vecaxxvecb=veccxxvecd),(and,vecaxxvecc=vecbxxvecd):}]` `veca-vecd "will be parallel to" vecb-vecc` `if (veca-vecd)xx(vecb-vecc)=vec0` ` if(veca-vecd)xx(vecb-vecc)=vec0` `i.e. if vecaxxvecb-vecaxxvecc-vecd xxvecb+vecd xxvecc=vec0` `if (vecaxxvecb+vecd xx vecc)-(vecaxxvecc+vecd xxvecb)=vec0` `if (veca xx vecb-veccxxvecd)-(vecaxxvecc-vecb xxvecd)=vec0` `if vec0-vec0=vec0` `vec0=vec0` which is ture Hence the result. |
|