InterviewSolution
Saved Bookmarks
| 1. |
If `vecb and vecc` are any two mutually perpendicular unit vectors and `veca` is any vector, then `(veca.vecb)vecb+(veca.vecc)vecc+(veca.(vecbxxvecc))/(|vecbxxvecc|^2)(vecbxxvecc)=` (A) 0 (B) `veca (C) `veca/2` (D) `2veca` |
|
Answer» Correct Answer - `veca` Let `vecalpha, vecbeta,vecgamma` be any three mutually perpendicular non-coplanar, unit vectors and `veca` be any vector, then `veca= (veca.vecalpha)vecalpha+ (veca.vecbeta)+(veca.vecgamma)vecgamma` Here `vecb, vecc` are two mutually perpendicular vectors, therefore, `vecb , vecc and (vecb xx vecc)/(|vecb xx vecc|)` are three mutually Perpendicular non-coplanaar unit vectors. Hence `veca=(veca .vecb)vecb+(veca.vecc)vecc` `+(veca.(vecbxxvecc)/(|vecb xx vecc|))(vecb xx vecc)/(|vecb xx vecc|)` `(veca.vecb)vecb+(veca.vecc)vecc` `+(veca.(vecbxxvecc))/(|vecb xx vecc|^(2))(vecbxxvecc)` |
|