InterviewSolution
Saved Bookmarks
| 1. |
If `vecb` is not perpendicular to `vecc` . Then find the vector `vecr` satisfying the equation `vecr xx vecb = veca xx vecb and vecr. vecc=0` |
|
Answer» Given `vecrxxvecb=vecaxxvecbRightarrow (vecr-veca)xxvecb=0` Hence, (`vecr - veca) and vecb` are parallel. `Rightarrow vecr-veca=tvecb` `vecr.vecc=0` Therefore, taking dot product of (i) by `vecc`, we get `vecr.vecc -veca.vecc=t(vecb .vecc)` `or 0-veca.vecc=r(vecb.vecc)ort=-((veca.vecc)/(vecb.vecc))` from (i) and (ii) solution of `vecr" is " vecr =veca-((veca.vecc)/(vecb.vecc))vecb` |
|