InterviewSolution
Saved Bookmarks
| 1. |
If `vecd=vecaxxvecb+vecbxxvecc+veccxxveca` is a on zero vector and `|(vecd.vecc)(vecaxxvecb)+(vecd.veca)(vecbxxvecc)+(vecd.vecb)(veccxxveca)|=0` then (A) `|veca|+|vecb|+|vecc|=|vecd|` (B) `|veca|=|vecb|=|vecc|` (C) `veca,vecb,vecc` are coplanar (D) `veca+vecc=vec(2b)`A. `|veca|=|vecb|=|vecc|`B. `|veca|+|vecb|+|vecc|=|vecd|`C. `veca, vecb and vecc` are coplanarD. none of these |
|
Answer» Correct Answer - c `vecd.vecc=vecd.vecb=vecd .vecc= [veca vecb vecc]` then `| (vecd.vecc) + (vecd.vecb) (vecc xx veca) =0 ` `or [veca vecb vecc] |veca xx vecb +vecb xx vecc +vecc xx veca)|=0` `or [veca vecb vecc] = 0 " " ( vecd` is non -zero) Hence. ` veca,vecb vecc` are coplanar. |
|