InterviewSolution
Saved Bookmarks
| 1. |
If `vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)])` where `veca,vecb,vecc` are three non-coplanar vectors, then the value of the expression `(veca+vecb+vecc).(vecp+vecq+vecr)` isA. `x [veca vecb vecc] + ([vecp vecqvecr])/x ` has least value 2B. `x^(2) [veca vecb vecc]^(2) + ([vecp vecqvecr])/x^(2) ` has least value `(3//2^(2//3))`C. `[vecp vecq vecr] gt 0 `D. none of these |
|
Answer» Correct Answer - a,c we have ` [vecp vecq vecr] = 1/ ([ veca vecb vecc])` therefore, ` [vecp vecq vecr] gt 0` a. ` x gt 0, x [veca vecb vecc] + ([vecp vecq vecr])/x ge 2` ( using ` A.M. ge G.M.`) b . Similarly, use `A.M. ge G.M` |
|