1.

If `vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(vecc+veca)` Such that `x+y+z!=0` and `vecr.(veca+vecb+vecc)=x+y+z`, then `[veca vecb vecc]=`

Answer» Correct Answer - B
We have
`vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(vecc xxveca)`
`:.vecr.(veca+vecb+vecc)=x+y+z`
`implies{x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)}.(veca+vecb+vecc)=x+y+z`
`impliesy[vecb vecc veca]+z[vecc veca vecb]+x[veca vecb vecc]=x+y+z`
`implies (x+y+z)[veca vecb vecc]=x+y+z`
`implies [veca vecb vecc]=1`


Discussion

No Comment Found

Related InterviewSolutions