

InterviewSolution
Saved Bookmarks
1. |
If `x=a{costheta+logtan""(theta)/(2)}" and "y=asintheta,` then `(dy)/(dx)` is equal toA. `cot theta`B. `tantheta`C. `sintheta`D. `costheta` |
Answer» Correct Answer - B We have, `x=a{costheta+logtan""(theta)/(2)}" and "y=asintheta` `implies(dx)/(d theta)=a{-sintheta+("sec"^(2)(theta)/(2))/(2"tan"(theta)/(2))}" and "(dy)/(d theta)=acostheta` `implies(dx)/(d theta)=a{-sintheta+(1)/(sintheta)}" and "(dy)/(d theta)=acostheta` `implies" "(dx)/(d theta)=a(cos^(2)theta)/(sintheta)" and",(dy)/(d theta)=acostheta` `(dy)/(dx)=((dy)/(d theta))/((dx)/(d theta))=(acostheta)/(a(cos^(2)theta)/(sintheta))=tantheta` |
|