1.

If `x gt y gt 0`, then find the value of `tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]`

Answer» Correct Answer - `(3pi)/(4)`
Since `(x)/(y) xx (x + y)/(x - y) gt 1`, then the expression is equal to
`pi + tan^(-1) [((x)/(y) + (x + y)/(x -y))/(1 - (x)/(y) xx (x + y)/(x -y))] = pi + tan^(-1) (-1) = pi - (pi)/(4) = (3pi)/(4)`


Discussion

No Comment Found