1.

If `(x+i y)^3=u+i v ,`then show that `u/x+v/y=4(x^2-y^2)`.

Answer» `(u+iv)=(x+iy)^(3)=x^(3)-iy^(3)+3ixy(x+iy)`
`rArr" "(u+iv)=(x^(3)-3xy^(2))+i(3x^(2)y-y^(3))`
`rArr" "u=x^(3)-3xy^(2))+3x^(2)y-y^(3)`
`rArr" "((u)/(x)+(v)/(y))=(x^(2)-3y^(2))+(3x^(2)-y^(2))=4(x^(2)-y^(2))`.


Discussion

No Comment Found