

InterviewSolution
Saved Bookmarks
1. |
If x = log p and `y=(1)/(p),` thenA. `(d^(2)y)/(dx^(2))-2p=0`B. `(d^(2)y)/(dx^(2))+y=0`C. `(d^(2)y)/(dx^(2))+(dy)/(dx)=0`D. `(d^(2)y)/(dx^(2))-(dy)/(dx)=0` |
Answer» `(dy)/(dx)=(-(1)/(p^(2)))/((1)/p)=-(1)/(p)=-y` `"or "(d^(2)y)/(dx^(2))=-(dy)/(dx)` `"or "(d^(2)y)/(dx^(2))+(dy)/(dx)=0` |
|