1.

If x = log2a a, y = log3a2a, z = log4a3a, then xyz – 2yz equals(a) a3 (b) 1 (c) 0 (d) –1

Answer»

(d) -1

\(x\) = log2a  a = \(\frac{\text{log}\,a}{\text{log}\,2a}\), y = log3a  2a = \(\frac{\text{log}\,2a}{\text{log}\,3a}\)

z = log4a  3a = \(\frac{\text{log}\,3a}{\text{log}\,4a}\)

∴ xyz - 2yz  = \(\frac{\text{log}\,a}{\text{log}\,2a}\).\(\frac{\text{log}\,2a}{\text{log}\,3a}\).\(\frac{\text{log}\,3a}{\text{log}\,4a}\) - 2\(\frac{\text{log}\,2a}{\text{log}\,3a}\).\(\frac{\text{log}\,3a}{\text{log}\,4a}\)

\(\frac{\text{log}\,a}{\text{log}\,4a}\) - 2\(\frac{\text{log}\,2a}{\text{log}\,4a}\) = \(\frac{\text{log}\,a-2\,\text{log}\,2a}{\text{log}\,4a}\)

\(\frac{\text{log}\,a-\,\text{log}\,(2a^2)}{\text{log}\,4a}\) = \(\frac{\text{log}\frac{a}{4}a^2}{\text{log}\,4a}\) = \(\frac{\text{log}\,(4a)^{-1}}{\text{log}\,(4a)}\) = \(\frac{-1.\text{log}\,4a}{\text{log}\,4a}\) = -1.



Discussion

No Comment Found