1.

If `|x| lt 1`, then find the sum of the serires ` 2+ 4x + 6x^(2) + 8x^(3) + ……..`.

Answer» Let `S= 2+ 4x + 6x^(2) + 8x^(3)+ … " "` (1)
`x S = 2x + 4x^(2)+ 6x^(3)+…" " `(2)
Eq. (1) - Eq. (2) gives
`S(1-x) = 2+ 2x + 2x^(3)+ 2x^(3)+ …`
`" " = 2(1+x+x^(2) + …)`
`1+ x + x^(2) +... ` is an infinite GP with `a = 1, r =x and |r| = |x| lt 1`
`therefore ` Sum of the series = `(1)/(1-x)`
`therefore S = (2)/((1-x)^(2))` .


Discussion

No Comment Found