 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)=` ? | 
| Answer» `x^(p)y^(q)=(x+y)^(p+q)` take log on both sides, we get `plog x+q log y = (p+q)log(x+y)` differentiate w.r.t. x `(p)/(x)+(q)/(y)(dy)/(dx)=(P+q)/(x+y)(1+(dy)/(dx))` `(dy)/(dx)((q)/(y)-(p+q)/(x+y))=(P+q)/(x+y)-(p)/(x)` `(dy)/(dx)((qx-py)/(y(x+y)))= (qx-py)/(x(x+y))` `(dy)/(dx)=(y)/(x)` Hence proved . | |