1.

If x `prop ` y then x^(n) `prop`

Answer» `x propy rArr x =ky` ( k =non zero variation constant )
`rArr (x)^(n) =(ky)^(n) ` (taking n-th power )
`rArr x^(n) =k^(n).y^(n). `
`rArrn^(n)=my^(n)` (when m =`k^(n) ne0=`variation constant )
`rArr x^(n)prop y^(n)` (`because` m =non -zero variation constant ).
`therefore x^(n) propy^(n) .`


Discussion

No Comment Found