

InterviewSolution
Saved Bookmarks
1. |
If `x y=e^((x-y)),`then find `(dy)/(dx)` |
Answer» Correct Answer - `(y(x-1))/(x(y+1))` The given function is `xy=e^((x-y)).` Taking logarithm on both the sides, we obtain `log(xy)=log (e^(x-y))` `log x + log y = (x-y)` Differentiating both sides with respect to x, we get `(1)/(x)+(1)/(y)(dy)/(dx)=1-(dy)/(dx)` `"or "(1+(1)/(y))(dy)/(dx)=1-(1)/(x)` `therefore" "(dy)/(dx)=(y(x-1))/(x(y+1))` |
|