InterviewSolution
| 1. |
If xcosθ – sinθ = 1 then x2 + (1 + x2)sinθ equals :1). 02). 3sec2θ (1 + sinθ) + 43). 4sec2θ (1 + sinθ)4). 4sec2θ (1 + sinθ) - 3 |
|
Answer» We know that, sec2θ - tan2θ = 1 Given, xcos θ – sinθ = 1 ⇒ xcosθ = 1 + sinθ Dividing the above EXPRESSION by cosθ ⇒ X = secθ + tanθ Squaring both SIDES, we get ⇒ x2 = (secθ + tanθ)2 ⇒ x2 = sec2θ + tan2θ + 2secθ tanθ ⇒ x2 = 1 + tan2θ + tan2θ + 2secθ tanθ ⇒ x2 = 1 + 2 tan2θ + 2secθ tanθ . . . . . . . eq (1) Adding 1 on both sides, we get ⇒ 1 + x2 = 2 + 2tan2θ + 2secθtanθ ⇒ (1 + x2) sinθ = 2sinθ + 2tan2θsinθ + 2secθtanθsinθ ⇒ (1 + x2) sinθ = 2sinθ + 2tan2θsinθ + 2tan2θ ⇒ x2 + (1 + x2)sinθ = 1 + 2 tan2θ + 2secθ tanθ + 2sinθ + 2tan2θ sinθ + 2tan2θ (from eq (1)) ⇒ x2 + (1 + x2)sinθ = 4 tan2θ + 1 + 2sinθ + 2tan2θ sinθ + 2secθ tanθ Using sec2θ – 1 = tan2θ, tanθ = sinθ/cosθ and secθ = 1/cosθ ⇒ x2 + (1 + x2)sinθ = 4sec2θ -4 + 1 + 2sinθ + 2 sec2θsinθ – 2sinθ + 2sec2θsinθ ⇒ x2 + (1 + x2)sinθ = 4sec2θ (1 + sinθ) - 3 |
|