1.

If `xprop y^(2) and y= 2a when x=a,` then find the relation between x and y .

Answer» `xprop y^(2) rArr x =k.y^(2) .....(1) (when k ne0="variation constant")`
If x =a , y=2a , `therefore ` from (1) we get , a =k =`(2a)^(2)`
`rArr a=l.4a^(2)rArr k=(a)/(4a)^(2)=(1)/(4a)`
`therefore` from (1) we get , x `1/4ay^(2) rArr y^(2) `=4ax.
Hence the required relation between x and y is `y^(2) ` = 4ax.


Discussion

No Comment Found