1.

If `y=e^-x cos x`, show that `(d^2y)/(dx^2)= 2e^-1 sin x`

Answer» `y=e^(-x)cosx`
diff. with respect to x
`dy/dx=-e^(-x)cosx-e^x sinx`
diff. with respect to x
`(d^2y)/(dx^2)=-[-e^(-x)cosx+e^(-x)(-sinx)]-[-e^(-x)sinx+e^(-x)cosx]`
`=e^(-x)cosxx+e^(-x)sinx+e^(-x)sinxx-e^(-x)cosx`
`=2e^(-x)sinx`.


Discussion

No Comment Found