1.

Find `A`and `B`so that `y=Asin3x+bcos3x`satisfies the equation`(d^2y)/(dx^2)+4(dy)/(dx)+3y=10cos3xdot`

Answer» `y=Asin3x+bcos3x`
diff. with respect to x
`dy/dx=Acos3x*3+B(-Sin3x)*3`
diff with respect to x
`(d^2y)/(dx^2)=-9Asin3x-9Bcos3x`
`(d^2y)/(dx^2)+4dy/dx+3y=10`
LHS`=-9Asin3x-9Bcos3x+12Acos3x-12Bsin3x+3Asin3x+3Bcos3x=10cos3x`
`sin3x(-9A-12B+3A)+cos3x(-9B+12A+3B)=10cos3x`
`12A-6B=10`
`12*(-2B)-6B=10`
`B=-1/3`
`A=2/3`.


Discussion

No Comment Found