1.

If `y=(logx)^(cosx)+(x^(2)+1)/(x^(2)-1)`, find `(dy)/(dx).`

Answer» Let `(logx)^(cosx)=u and(x^(2)+1)/(x^(2)-1)=v.` Then,
`u=(logx)^(cosx)rArr log u = cosx. Log (logx)." …(i)"`
On differentiating both sides of (i) w.r.t. x, we get
`(1)/(u).(du)/(dx)=cosx.(d)/(dx){log(logx)}+log(logx).(d)/(dx)(logx)`
`=cosx(1)/(logx).(1)/(x)-(sinx).log(logx).`
`therefore(du)/(dx)=u.{(cosx)/(xlogx)-(sinx).log(logx)}`
`rArr(du)/(dx)=(logx)^(cosx).{(cosx)/(x logx)-(sinx).log(logx)}.`
And, `v=((x^(2)+1))/((x^(2)-1))rArr(dv)/(dx)=((x^(2)-1).(d)/(dx)(x^(2)+1)-(x^(2)+1).(d)/(dx)(x^(2)-1))/((x^(2)-1)^(2))`
`rArr(dv)/(dx)=((x^(2)-1).2x-(x^(2)+1).2x)/((x^(2)-1)^(2))=(-4x)/((x^(2)-1)^(2)).`
`therefore y=u+v`
`rArr(dy)/(dx)=(du)/(dx)+(dv)/(dx)`
`=(logx)^(cosx).{(cosx)/(xlogx)-(sinx).(logx)}-(4x)/((x^(2)-1)^(2)).`


Discussion

No Comment Found