InterviewSolution
Saved Bookmarks
| 1. |
If y = sin(log x), then show that x2 y2 + xy1 + y = 0. |
|
Answer» y = sin(log x) y1 = cos(log x) \(\frac{d}{dx}\)(log x) y1 = cos(log x).\(\frac{1}{x}\) ∴ xy1 = cos(log x) Differentiating both sides with respect to x, we get xy2 + y1(1) = -sin(log x).\(\frac{1}{x}\) ⇒ x[xy2 + y1] = -sin(log x) ⇒ x2 y2 + xy1 = -y ⇒ x2 y2 + xy1 + y = 0 |
|