1.

If y = sin(log x), then show that x2 y2 + xy1 + y = 0.

Answer»

y = sin(log x) 

y1 = cos(log x) \(\frac{d}{dx}\)(log x) 

y1 = cos(log x).\(\frac{1}{x}\) 

∴ xy1 = cos(log x)

Differentiating both sides with respect to x, we get 

xy2 + y1(1) = -sin(log x).\(\frac{1}{x}\) 

⇒ x[xy2 + y1] = -sin(log x) 

⇒ x2 y2 + xy1 = -y 

⇒ x2 y2 + xy1 + y = 0



Discussion

No Comment Found