

InterviewSolution
Saved Bookmarks
1. |
If `y=(tan^(-1)x)^2`, then prove that `(1+x^2)^2 y_2+2x (1+x^2)y_1=2`. |
Answer» Given: `y=(tan^(-1)x)^(2)." …(i)"` On differentiating both sides of (i) w.r.t. x, we get `y_(1)=2 tan^(-1)x.(1)/((1+x^(2))` `rArr (1+x^(2))y_(1)=2 tan^(-1)x` `rArr (1+x^(2))^(2)y_(1)^(2)=4(tan^(-1)x)^(2)" [on squaring both sides]"` `rArr (1+x^(2))^(2)y_(1)^(2)-4y=0." ...(ii)"` On differentiating both sides of (ii) w.r.t. x, we get `(1+x^(2))^(2).2y_(1)y_(2)+y_(1)^(2).2(1+x^(2)).2x-4y_(1)=0` `rArr (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)-2=0.` Hence, `(1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2.` |
|