InterviewSolution
Saved Bookmarks
| 1. |
If `y=x^((logx)^log(logx))` then `(dy)/(dx)=`A. `(y)/(x)((In x^(x-1))"+2 In x In(In x))"`B. `(y)/(x)(log x)^(log (log x))(2 log (log x )+1)`C. `(y)/(" x In x")[(In x )^(2)+2In (In x)]`D. `(y)/(x)(log y)/(log x)[2 log (log x)+1]` |
|
Answer» Correct Answer - B `y=x^((log x )^(log (log x)))` `therefore" "log y = (log x) (log x)^(log (log x))" (1)"` Taking log of both sides, we get log (log y ) = log (log x) + log (log x) log (log x) Differentiating w.r.t. x, we get `(1)/(log y).(1)/(y)(dy)/(dx)=(1)/(x log x )+(2 log (log x))/(log x )(1)/(x)` `=(2log (log x)+1)/(x log x)` `"or "(dy)/(dx)=(y)/(x).(log y)/(log x)(2 log (log x )+1)` Substituting the value of log y from (1), we get `(dy)/(dx)=(y)/(x)(log x)^(log(logx))(2 log (log x)+1)` |
|