1.

If `y=(xsin^(-1)x)/(sqrt(1-x^2))+logsqrt(1-x^2)`, then prove that `(dy)/(dx)=(sin^(-1)x)/((1-x^2)^(3/2))`

Answer» Let `x = sin theta => dx/(d theta) = cos theta `
Now, `y = (theta sin theta)/sqrt(1-sin^2theta) + log sqrt(1-sin^2theta)`
`=>y = (theta sin theta)/cos theta +log cos theta`
`=>y = theta tan theta +log cos theta`
`=>dy/(d theta) = tan theta + theta(sec^2 theta)+1/costheta(-sintheta)`
`=>dy/(d theta) = tan theta + theta/(cos^2theta)-tan theta`
`=>dy/(d theta) = theta/(cos^2theta)`
`=> dy/dx = (dy/(d theta))/(dx/(d theta)) = (theta/(cos^2theta))/(cos theta)`
`=> dy/dx = (theta/(cos^3 theta))`
Now, `x = sin theta => cos theta = sqrt(1-x^2)`
`=> dy/dx = (sin^-1x)/(1-x^2)^(3/2).`


Discussion

No Comment Found