1.

If `((z-1)/(z+1))` is purely an imaginary number and `z ne -1` then find the value of |z|.

Answer» Correct Answer - |z| = 1
Let z = x + iy. Then,
`(z-1)/(z+1)=((x-1)+iy)/((x+1)+iy)xx((x+1)-iy)/((x+1)-iy)=((x^(2)+y^(2)-1)+(x+y)i)/((x+1)^(2)+y^(2))`
Now, `(z-1)/(z+1)` is purely imaginary `iff x^(2) + y^(2) -1 = 0 iff x^(2) + y^(2) = 1 iff |z| = 1`.


Discussion

No Comment Found