InterviewSolution
Saved Bookmarks
| 1. |
If z = 2 + i, prove that `z^(3) + 3z^(2) - 9z + 8 = (1 + 14i)`. |
|
Answer» We have `z = 2 + i rArr z - 2 = i rArr (z-2)^(2) = i^(2) rArr z^(2) - 4z + 5 = 0." "...(i)` `therefore" "z^(3) + 3z^(2) - 9z + 8` `= z(z^(2)-4z+5) + 7(z^(2) - 4z + 5) + 14z - 27` `=(z xx 0) + (7 xx 0) + 14z - 27 = (14z - 27)" "["using (i)"]` `= 14 (2 + i) - 27 = (1 + 14i)`. Hence, `z^(3) + 3z^(2) - 9z + 8 = (1 + 14i)`. |
|