1.

If `z^(2) + |z|^(2) = 0`, show that z is purely imaginary.

Answer» Let z = (x + iy). Then,
`z^(2)+|z|^(2)=0 rArr x^(2)-y^(2)+2ixy + x^(2)+y^(2)=0`
`rArr" "x^(2)+ixy=0 rArr x^(2)=0 and xy = 0 rArr x = 0`.
`therefore" "z` is purely imaginary.


Discussion

No Comment Found