1.

If `z = 3 + 2i`, prove that `z^(2) - 6z + 13 = 0` and hence deduce that `3z^(3) - 13z^(2) + 9z + 65 = 0`.

Answer» `z = 3 + 2i rArr z -3 = 2i rArr (z - 3)^(2) = 4i^(2)`
`rArr" "z^(2) - 6z + 13 = 0" "...(i)`.
Thus, `z^(2) -6z + 13 = 0`.
Now, `3z^(3) - 13z^(2) + 9z + 65 = 3z(z^(2) - 6z + 13)+5(z^(2) - 6z + 13)=(3z xx 0) + (5 xx 0) = 0" "["using (i)"]`
Hence, `3z^(2) - 13z^(2) + 9z + 65 = 0`.


Discussion

No Comment Found