InterviewSolution
Saved Bookmarks
| 1. |
In a right angled triangle if sinB = (5/13) then find the value of tanB + cosecB.1). 151/652). 181/603). 191/754). None of these |
|
Answer» GIVEN sinB = (5/13) = Perpendicular/hypotenuse ⇒ We know that (Hypotenuse)2 = (Perpendicular)2 + (BASE)2 ⇒ (13)2 = (5)2 + (Base)2 ⇒ (Base)2 = (13)2 - (5)2 ⇒ (Base)2 = 169 - 25 ⇒ (Base)2 = 144 ⇒ (Base) = √144 ⇒ (Base) = 12 ⇒ cosB = Base/hypotenuse = 12/13 ⇒ tanB = SIN B/Cos B ⇒ tanB = (5/13)/(12/13) ⇒ tanB = 5/12 ⇒ cosecB = (1/Sin B) = (13/5) ⇒ tanB + cosecB = (5/12) + (13/5) ⇒ (25 + 156)/60 ⇒ 181/60 ∴ Required value is 181/60 |
|