1.

In a triangle ABC, if `2b=a+c` and `A-C=90`, then `sin B` equals

Answer» As, 2b=a+c
So by sine rule,`2sinB=sinA + sinC`
`2sinB=2sin((A+C)/2)cos((A-C)/2)``sinB=sin((pi-B)/2)cos(pi/4)``2sin(B/2)cos(B/2)=cos(B/2)*(1/sqrt2)``sin(B/2)=1/(2sqrt2)`
Hence, `cos(B/2)=sqrt7/(2sqrt2)`
So, `sin(B)=2*sin(B/2)*cos(B/2)=2*sqrt7/(4*2)=sqrt7/4`


Discussion

No Comment Found