1.

In an A.P., show that am+n + am–n = 2am.

Answer»

Let common difference of an A.P is d and first term is a 

We know, 

an = a + (n – 1)d 

Where a is first term or a1 and d is common difference.

Now, 

Take L.H.S.: 

am+n + am-n = a + (m + n – 1)d + a + (m - n – 1)d 

⇒ am+n + am-n = a + md + nd – d + a + md - nd – d 

⇒ am+n + am-n = 2a + 2md – 2d 

⇒ am+n + am-n = 2(a + md – d) 

⇒ am+n + am-n = 2[a + d(m – 1)] 

{∵ an = a + (n – 1)d} 

⇒ am+n + am-n = 2am 

Hence Proved.



Discussion

No Comment Found