1.

In an A.P. sum of three consecutive terms is 27 and their product is 504, find the terms. (Assume that three consecutive terms in A.P. are a – d, a, a + d.)

Answer»

Let the three consecutive terms in an A.P. be 

a – d, a and a + d. 

According to the first condition, 

a – d + a + a + d = 27 

∴ 3a = 27 

∴ a =  27/3

∴ a = 9 ….(i) 

According to the second condition, 

(a – d) a (a + d) = 504 

∴ a(a2 – d2 ) = 504 

∴ 9(a2 – d2 ) = 504 …[From (i)] 

∴ 9(81 – d2 ) = 504 

∴ 81 – d2 = 504

∴ 81 – d2 = 56 

∴ d2 = 81 – 56 

∴ d2= 25 

Taking square root of both sides, we get 

d = ± 5 

When d = 5 and a =9, 

a – d = 9 – 5 = 4 

a = 9 

a + d = 9 + 5 = 14 

When d = -5 and a = 9, 

a – d = 9 – (-5) = 9 + 5 = 14 

a = 9 

a + d = 9 – 5 = 4 

∴ The three consecutive terms are 4, 9 and 14 or 14, 9 and 4.



Discussion

No Comment Found