InterviewSolution
Saved Bookmarks
| 1. |
In `DeltaABC`,ray BD bisects `angleABC` and ray CE bisects `angleACB`. If seg AB `cong`seg AC, then prove that ED `abs()` BC. |
|
Answer» In `DeltaABC` ray BD is the bisector of `/_ABC` `:.` by the theorem of angle bisector of a triangle, `(AB)/(BC)=(AD)/(DC)`……….. 1 In `DeltaABC` ray CE is the bisector of `/_ACB` `:.` by the theorem of angle bisector of a triangle, `(AC)/(BC)=(AE)/(EB)`...............2 Set `AB~="seg"`.........Given 3 `:.(AB)/(BC)=(AC)/(BC)`............[From 1, 2 and 3 ]4 In `DeltaABC` `(AE)/(EB)=(AD)/(DC)` ..[from 1, 2, 4] `:.` by converset of basic propertionality theorem set `ED||` side BC i.e. `ED||BC`. |
|