1.

In the figure in `DeltaABC,` point D on side BC is such that `/_BAC=/_ADC`. Prove that `CA^(2)=CBxxCD`.

Answer» In `DBAC` and `DeltaADC`
`/_BAC~=/_ADC`..(Given)
`/_ACB~=/_DCA`………(Common angle)
`:.DeltaBAC~DeltaADC` ………(AA test of similarity)
`:.(CA)/(CD)=(CB)/(CA)` ………..(Corresponding sides of similar triangles are in proportion)
`:.CA^(2)=CBxxCD.`


Discussion

No Comment Found

Related InterviewSolutions