1.

`int_0^pi[cotx]dx`, where [.] denotes the greatest integerfunction, is equal to(1) `pi//2`(2) 1(3) `1`(4) `pi//2`

Answer» `I = int_0^pi [ cot x] dx`
`= int_0^pi [ cot(pi- x)] dx`
`= int_0^pi [cot(pi-x)] dx`
`= int _0^ pi [ - cot x] dx`
`(i) + (ii)`
`2 I= int_0^pi [ cot x] + int_0^pi [-cot x] dx`
`[x] + [-x] = -1 x !in z`
`= 0 x !in z`
`2I= int_0^pi -1 dx`
`2I = -1 xx pi `
`I = - pi/2`
option 4 is correct


Discussion

No Comment Found