1.

Integrate : ∫5sin2x-cosx / 9sin2x+4\(\int\frac{5sin 2x-cos x}{9sin^2x+4}dx\)

Answer»

\(\int\frac{5sin 2x-cos x}{9sin^2x+4}dx\) 

\(=\int\frac{5sin2x}{9sin^2x+4}dx-\int\frac{cos x}{9sin^2x+4}dx\)

\(5\int\frac{dt}{9t+4}-\frac19\int\cfrac{du}{u^2+\frac49}\) (By taking sin2x = t and sin x = u)

\(\frac59\)log|9t + 4| - \(\frac16\)tan-1(3u/2) + c

\(\frac59\) log|9 sin2x + u| - \(\frac16\) tan-1(\(\frac{3sinx}2\)) + c

(By putting t = sin2x and u = sin x)



Discussion

No Comment Found