InterviewSolution
Saved Bookmarks
| 1. |
Integrate : ∫5sin2x-cosx / 9sin2x+4\(\int\frac{5sin 2x-cos x}{9sin^2x+4}dx\) |
|
Answer» \(\int\frac{5sin 2x-cos x}{9sin^2x+4}dx\) \(=\int\frac{5sin2x}{9sin^2x+4}dx-\int\frac{cos x}{9sin^2x+4}dx\) = \(5\int\frac{dt}{9t+4}-\frac19\int\cfrac{du}{u^2+\frac49}\) (By taking sin2x = t and sin x = u) = \(\frac59\)log|9t + 4| - \(\frac16\)tan-1(3u/2) + c = \(\frac59\) log|9 sin2x + u| - \(\frac16\) tan-1(\(\frac{3sinx}2\)) + c (By putting t = sin2x and u = sin x) |
|