1.

integrate sin^4x.dx

Answer»

∫sin^4(x)

=> ∫ [sin^2(x)]^2

=> ∫ [(1 -cos(2x)/2)]^2

=>1/4 ∫[1 + cos^2(2x) - 2cos(2x)]

=>1/4 [1 - 2cos(2x) + (1 + cos(4x)/2 ]

=> ∫ (1/4) - ∫(1/2)cos(2x) + ∫(1/8) + ∫(1/8)cos(4x)

=> ∫(3/8) - ∫(1/2)cos(2x) +∫ (1/8)cos(4x)

so ∫sin^4(x)dx = 3/8∫dx - 1/2∫cos(2x) dx + 1/8∫cos(4x) dx

∫sin^4(x)dx = (3/8)x - (1/2)sin(2x)*(1/2) + (1/8)sin(4x)*(1/4) + c

∫sin^4(x)dx = (3/8)x - (1/4)sin(2x) + (1/32)sin(4x) + c



Discussion

No Comment Found

Related InterviewSolutions