InterviewSolution
Saved Bookmarks
| 1. |
किसी `triangleABC` में सिद्ध करे कि `2[asin^(2)""(C)/(2) +csin^(2)""(A)/(2)] = c+a-b` |
|
Answer» बायाँ पक्ष ` = 2[asin^(2)""(C)/(2)+csin^(2)""(A)/(2)]` ` = 2 [a((s-a)(s-b))/(ab) +c((s-b)(s-c))/(bc)]` ` =2[((s-a)(s-b))/(b) +((s-b)(s-c))/(b)]` ` = 2(s-b)[((s-a)+(s-c))/(b)]` ` = 2(s-b)((2s-a-c))/(b) = (2s-2b) *(b)/(b)` ` = (a+b+c-2b) = a +c - b = ` दायाँ पक्ष |
|