1.

\(\left( {\frac{2}{{\sqrt 5 + \sqrt 3 }} - \frac{3}{{\sqrt 6 - \sqrt 3 }} + \frac{1}{{\sqrt 6 + \sqrt 5 }}} \right)\)is equal to1). \(2\sqrt 6\)2). \(2\sqrt 5\)3). –\(2\sqrt 3\)4).0

Answer»

$(\BEGIN{array}{l} \left( {\frac{2}{{\sqrt 5 + \sqrt 3 }} - \frac{3}{{\sqrt 6 - \sqrt 3 }} + \frac{1}{{\sqrt 6 + \sqrt 5 }}} \right)\\ \RIGHTARROW \left( {\frac{2}{{\sqrt 5 + \sqrt 3 }}} \right) \TIMES \left( {\frac{{\sqrt 5 - \sqrt 3 }}{{\sqrt 5 - \sqrt 3 }}} \right) - \left( {\frac{3}{{\sqrt 6 - \sqrt 3 }}} \right) \times \left( {\frac{{\sqrt 6 + \sqrt 3 }}{{\sqrt 6 + \sqrt 3 }}} \right) + \left( {\frac{1}{{\sqrt 6 + \sqrt 5 }}} \right) \times \left( {\frac{{\sqrt 6 - \sqrt 5 }}{{\sqrt 6 - \sqrt 5 }}} \right)\\ \Rightarrow \left[ {\frac{{\left\{ {2\left( {\sqrt 5 - \sqrt 3 } \right)} \right\}}}{{\left\{ {5 - 3} \right\}}}-\frac{{\left\{ {3\left( {\sqrt 6 + \sqrt 3 } \right)} \right\}}}{{\left\{ {6 - 3} \right\}}} + \frac{{\left\{ {\sqrt 6 - \sqrt 5 } \right\}}}{{\left\{ {6 - 5} \right\}}}} \right] \end{array})$

⇒ √5 - √3 - √6 - √3 + √6 - √5

⇒ -2√3



Discussion

No Comment Found